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1 Introduction 

 Traditional Design for Manufacturing (DFM) helps designers to eliminate 

manufacturing difficulties. Similarly, in Additive Manufacturing (AM), a set of methods and 

tools are developed under Design for Additive Manufacturing (DfAM). AM has unique 

capabilities compared to conventional manufacturing methods, like mass customization, high 

material efficiency, function integration, and part consolidation. So, the decision-making in 

design and development of parts using AM is crucial in many industries.  

 A detailed study of all design potentials in AM and its benefits are discussed by Kumke 

et al. [1], through a semantic network.  So, a decision support system (DSS) considering these 

design potentials and its value additions are required to optimize the industry's needs. Then we 

performed a centrality analysis on the network to identify the important potential in AM and 

found that Part Consolidation (PC) has the highest number of connections with the nodes in the 

network.  

 Because of the layer-by-layer nature, AM needs a shape complexity metric that can 

measure the part’s internal and external shape complexity. There are few quantitative metrics 

in the literature based on geometrical parameters like the volume of the part, the surface area 

of the part, the volume of the bounding box, the thickness of the part, the number of holes, 

number of sharp corners [2–4]. In our work, we propose a combined shape complexity metric 

based on view similarity [5] for additional benefits.  

2 Research Gap 

 Among the unique process capabilities of AM, PC eases the assembly of parts in 

conventional manufacturing by the way of reduction in number of parts. All components in the 

product need not be manufactured separately and assembled, instead few components can be 

consolidated into a single part. The existing PC strategies adopted rule-based methods for 

identifying the candidate parts. So, we propose a network-based approach that uses a centrality 

score for identifying the potential candidate for PC.  

 The existing shape complexity metrics used in AM are adopted from the metrics in the 

conventional manufacturing process and are only capable of measuring the external shape 

complexity of parts. For example, Conner et al. [3] modified the complexity factor that Ravi et 

al. [4] developed and used it to select the suitable design for AM. Similarly, Joshi et al. [2] have 

developed a complexity score to automate the selection of additive, subtractive, and hybrid 

manufacturing processes. These metrics use geometry-related parameters to calculate the shape 

complexity and are developed exclusively for conventional manufacturing processes. These 

metrics are not suitable for evaluating the shape complexity if the design has occlusions and 

internal lattice structures. So, we have developed a view similarity-based metric that deducts 

the internal structure and external shape complexity.  

3 Objectives 

1. Develop quantitative system-level and part-level complexity metrics for the decision-

making in the selection of parts. 
2. Develop measures to assess the economic viability in the selection of parts for AM. 

3. Define a Composite Complexity metric by aggregating the economic factors with the 

shape complexity metric to assess the suitability of a design variant in additive 

manufacturing. 

4. Develop a Decision Support System by aggregating all the developed metrics to 

automate the decision-making process. 
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4 Overall Methodology 

 The whole methodology of this work involves product/system level identification of 

parts, followed by part-level evaluation, and then a multicriteria evaluation to narrow down 

design variants. The overall methodology followed is shown in figure 1 and details of the 

methodology are discussed in the following sections. 

 

Fig. 1 Overview of the methodology followed in the presented study 
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4.1 PC in DfAM: A two-level approach using complexity metrics 

 The suitable candidate for part consolidation is identified by performing complex 

network analysis on the product architecture or Design Structure Matrix (DSM). The product 

network is constructed from a part interaction matrix created from the assembly/bill of 

materials. Then the centrality of each component in the product network is calculated and the 

component with high centrality score is selected as the candidate for PC. The centrality score 

is defined by the number of connections incident on each node and it is used as an estimate of 

parts importance in the network. The part with the highest centrality score will be selected as a 

candidate for PC. After consolidation the manufacturability of the consolidated design is 

decided based on the Modified Complexity Factor (MCF).  

4.1.1 Case study: Motorcycle steering assembly 

 Initially, there were seven components in the design, figure 2 shows the initial design 

and components in the design. The total number of parts in the assembly is reduced to four by 

using the network measure. The network from the relationship matrix is drawn as shown in 

figure 3(a) and the centrality score is calculated for each node. Based on the centrality score 

the candidate for part consolidation is identified and the part count is reduced to four from 

seven. The product network after the consolidation is shown in figure 3(b) and the centrality 

score of each part is graphically represented in figure 4. 

 

Fig. 2.  Motorcycle steering assembly (with permission from ASME) 

 

Fig. 3. (a) Product network before consolidation (b) Product network after consolidation 
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Fig. 4.    All degree centrality of the motorcycle steering assembly 

From figure 4, it can be seen that the upper triple clamp has the highest centrality score, 

so the upper triple clamp is the most important node in the product network. The next step is to 

consolidate the possible parts along with the upper triple clamp without eliminating the 

functionality of the assembly the parts need to be consolidated. So, out of seven components 

the lower triple clamp, upper triple clamp, and fork tubes can be considered as standard parts, 

and without eliminating the functionality steering handle, and cap, the base is combined with 

the upper triple clamp, and it can be made as a single part. The next step is to check the 

manufacturability of the consolidated part using equation (1). The consolidated design is shown 

in figure 5. 

Modified Complexity Factor, MCF = 5.7 +10.8Cpr + 18Car +32.7Cnh              (1) 

Where, Part volume ratio, 𝐶𝑝𝑟 = 1 −
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥
= 1 −  

𝑉𝑝

𝑉𝑏
           (2) 

 Area ratio, 𝐶𝑎𝑟 = 1 −
𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑝𝑎𝑟𝑡

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒
    = 1 −  

𝐴𝑝

𝐴𝑠
                    (3) 

 Hole ratio, 𝐶𝑛ℎ = 1 −  
1

√1+𝑁ℎ
,       (4) 

Where, 𝑉𝑝 is the volume of part, 𝑉𝑏 is the volume of bounding box, 𝐴𝑝 is the surface 

area of part, 𝐴𝑠 is surface area of sphere, and 𝑁ℎ is the number of holes 

 

Fig. 5. Consolidated upper triple clamp. 
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Table 1. Mass properties and parameters for calculating the MCF. 

Volume 

of the 

part 

(cm3) 

Volume 

of the 

Bounding 

box (cm3) 

Surface 

area of 

the part 

(cm2) 

Surface 

area of 

the 

sphere 

(cm2) 

No 

of 

holes 

(𝑁ℎ) 

Volume 

ratio 

(𝐶𝑝𝑟) 

Area 

ratio 

(𝐶𝑎𝑟) 

Hole 

ratio 

(𝐶𝑛ℎ) 

MCF 

582.827 4215.809 1139.952 337.424 2 0.8617 0.7040 0.50 44.03 
 

From table 1, the MCF value of the consolidated design is more than 44, so the design is suitable 

for manufacturing using AM as discussed by Conner et al. [3]. 

 

4.2 A View Similarity-based Shape Complexity Metric to Guide Part Selection for 

Additive Manufacturing 

 The methodology involves calculating a part’s shape complexity based on the concept 

of view similarity, that is, the similarity of different views of the outer shape and internal cross-

sectional geometry. The combined shape complexity metric (weighted sum of the external 

shape (𝑐𝑒𝑠) and internal structure complexity (𝑐𝑖𝑠)) has been used to rank various 3D models. 

The metric has been tested for its sensitivity to various input parameters and thresholds are 

suggested for effective results. The proposed metric's applicability for part selection has also 

been investigated and compared with the existing metric-based part selection. The proposed 

shape complexity metric can distinguish parts of different shapes, sizes, and parts with minor 

design variations.  

 The proposed metric is sensitive to input parameters, such as the number of viewpoints, 

design orientation, image resolution, and different lattice structures. To address this issue, a 

sensitivity analysis is performed to suggest thresholds for each input parameter for optimum 

results. The number of viewpoints for capturing the external views are chosen as 22 based on 

the sensitivity analysis. The minimum support volume is selected for orientation and a slice 

height of 3mm is used for capturing the internal structure of the given 3D model. The 

orientations of the 3D model and viewpoints are presented in figure 6. The equation for 

calculating the combined shape complexity is given in Eq. (5).  

Combined Shape Complexity Metric, 𝑐𝑠𝑐 = (𝑤1𝑐𝑒𝑠 + 𝑤2𝑐𝑖𝑠)    (5) 

where 𝑤1 and 𝑤2 are the weights. 

The effectiveness of the proposed metric was evaluated using a group of 3D models 

with obvious shapes that were both simple and complex, as shown in figure 7. Among the 

shapes designed with labelled text, conformal cooling channels, and manifolds are also 

included. Using Eq. (5), the combined complexity metric can be calculated for this group of 

parts. Figure 8 shows the calculated 𝑐𝑒𝑠, 𝑐𝑖𝑠, and 𝑐𝑠𝑐 values for these parts.  

The fractal 3D model shown in figure 7(j) has a higher shape complexity compared to 

other models in the group because it has high dissimilarity in the views of the external shape 

and internal structure. Because of the considerable difference in internal structure views 

compared to other models in figure 7, fractal and Klien bottles only have  𝑐𝑖𝑠 values. The 

proposed metric can rank 3D models based on their shape complexity and effectively 

differentiate simple from complex models. Also, the proposed metric can be able to 

accommodate the fine features like labels and conformal cooling channels present in the design. 
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Fig. 6 Arrangements of viewpoints around the 3D model for capturing external images 

4.2.1 Part selection for redesign using 𝑐𝑠𝑐 

Weight reduction is one of the objectives of both topology and lattice optimization, and 

we propose using 𝑐𝑠𝑐 to decide whether parts need redesign before selecting them for AM. If 

𝑐𝑠𝑐  ≥ 4, we can be selected the design for AM without any redesign. If the 𝑐𝑠𝑐 < 4, such 

models can benefit from computational tools for redesign, such as TO and generative design.  

 

Fig. 7 3D models selected for validation of the proposed metric 
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Fig. 8 𝑐𝑠𝑐 of 3D models selected for validation. 

Similarly, to identify candidates for lattice optimization, 𝑐𝑖𝑠  < 1 is chosen, whereas 

𝑐𝑖𝑠  ≥ 1 is selected for AM. The calculated shape complexity values of the redesigned parts are 

shown in figure 9(b). The lower increase in 𝑐𝑖𝑠 for the engine bracket compared with the other 

models is due to the non-prismatic nature of the model. For prismatic models, the percentage 

increase in 𝑐𝑖𝑠 is 100%, but for non-prismatic models, it is always <100%.  

4.3 Evaluation of Computationally optimized Design Variants for Additive 

Manufacturing Using a Fuzzy MCDM Approach 

The selected parts for redesigning in the previous section are optimized using various 

computational tools such as Topology Optimization (TO), Generative Design (GD), and Lattice 

Optimization (LO) in DfAM and generate multiple design variants. So, selection of these design 

variants should be done using both opportunistic and restrictive DfAM. Therefore, economic 

factors such as the cost-benefit ratio (𝐶𝑏𝑟) and incremental cost (𝐶𝑖) are developed to assess 

the economic viability of the designs. Then a Fuzzy Powered Maclaurin Symmetric Mean 

(FPWMSM) operator [6] is used for the aggregation of the shape complexity metric and 

economic factors. The effectiveness of the proposed composite complexity metric is studied 

using three different sets of design variants.  
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Fig. 9 (a) Different design variations with and without lattice structures (b) 𝑐𝑠𝑐 value of 

design variation  

4.3.1 Evaluation of Economic Viability 

The definition of the cost benefit ratio and incremental cost are given below. 

Cost-benefit ratio (Cbr) is the ratio of the benefit in the processing cost after optimization to the 

total processing cost of an unoptimized part using the L-PBF process. It represents the cost 

savings of the optimization effort. The probability of selecting a design variant is higher for an 

optimized design variant with a larger Cbr. 

Incremental cost (𝐶𝑖) is the additional cost incurred in processing the design variant compared 

to the unoptimized design variant using L-PBF. The design variant with the high incremental 

cost is not preferred for manufacturing using L-PBF. 

Cost-benefit ratio, 𝐶𝑏𝑟 =  
Processing cost benefit

Total processing cost of unoptimized design
    (6) 
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      𝐶𝑏𝑟 =  
(𝐶𝐵𝑂− 𝐶𝐴𝑂) 𝜆

𝐶𝐵𝑂
      (7) 

Where, 𝜆 =  {
0    if 𝐶𝐵𝑂 −  𝐶𝐴𝑂 < 0
1    if 𝐶𝐵𝑂 −  𝐶𝐴𝑂 > 0

  

Incremental cost, 𝐶𝑖 =  (𝐶𝑆)𝐴𝑂 −  (𝐶𝑆)𝐵𝑂      (8) 

  Where 𝐶𝑆 is the cost of processing the support structure 

 The cost model for calculating the processing cost and support structure cost is adopted 

from the literature [7] and [8] respectively. The design variants of an upper triple clamp are 

selected to study the effectiveness of the Cbr and 𝐶𝑖 using the above equations and shown in 

figure 10 (a) and (b).  

 

Fig. 10 (a) Variation of  𝐶𝑏𝑟 with weight reduction of design variants (b) variation of 𝐶𝑖 with 

weight reduction of design variants 
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4.3.2 Ranking of design variants using FPWMSM 

The design variants obtained from the different computational tools are be ranked using 

the aggregated measures. Therefore, design variants of a GE engine bracket are selected for 

ranking using the FPWMSM operator. The steps followed to rank the design variants are shown 

in figure 11. 

 

Fig. 11 Proposed MCDM approach 

 Finally, for each alternative, the composite complexity metric is calculated 𝛽1 =
 〈0.5472〉, 𝛽2 =  〈0.4278〉, 𝛽3 =  〈0.4150〉, 𝛽4 =  〈0.4152〉, 𝛽5 =  〈0.3469〉, 𝛽6 =  〈0.5346〉, 

𝛽7 =  〈0.4130〉, 𝛽8 =  〈0.5074〉, 𝛽9 =  〈0.2516〉. This number represents a composite 

complexity metric (𝑐𝑐𝑜). The TO1 has the highest 𝑐𝑐𝑜 value compared to other design variants, 

hence TO1 is selected as the suitable design variant for AM. The proposed approach is found 

effective for evaluation design variants for AM by considering both technical feasibility and 

economic viability. 

5 Conclusions and future scope 

An alternate approach for part consolidation using two-level quantitative measures is 

developed. In the first level from the product network, parts with high centrality scores are 

identified and the parts around the high centrality node are consolidated without eliminating 

the functionality of the product. Then the manufacturability of the consolidated design is 
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assessed with the help of MCF in the second level. Compared to the rule-based approach, the 

proposed network measure reduces 10-15% more parts in the assembly. 

A novel shape complexity metric using the view similarity algorithm is proposed and 

verified it using a variety of 3D models. The combined shape complexity metric is a weighted 

sum of internal and external shape complexity metrics. The effectiveness of the combined 

complexity metric to guide opportunistic DfAM strategies such as topology optimization, 

generative design, and lattice optimization is also studied. The internal structure complexity 

metric can be used to find lattice optimization opportunities, whereas the combined complexity 

metric can detect redesign opportunities. So, it assists users in reducing the number of parts 

recommended for expert judgment in final decision-making. 

Multiple design variants can be generated from the computational tools in DfAM. So, 

to select the most suitable design variant a multi-criteria decision-making approach is proposed. 

The economic factors and shape complexity metrics are aggregated to evaluate the composite 

complexity metric of the design variant. Then the design variant with the highest composite 

complexity value is selected for manufacturing in L-PBF. This approach will be useful for 

decision-makers when they have multiple design solutions for a single design problem. 

Ranking and selection of the design variants using the proposed approach resulted in a 50% 

cost reduction in the case of an airplane bracket and a 75% cost reduction in the case of an 

engine bracket compared with the original design manufactured in L-PBF. Finally, all these 

three quantitative metrics-based decision-making have been integrated into a decision support 

system to enhance the adoption of AM in the industry. 

Nomenclature 

𝛽𝑖 - Aggregated measure of different criteria 

λ - Kronecker function 

𝐴𝑝 - Area of the part 

𝐴𝑠 - Surface area of bounding sphere 

𝑐𝑐𝑜 - Composite complexity metric 

𝑐𝑒𝑠 - External shape complexity metric 

𝑐𝑖𝑠 - Internal structure complexity metric 

𝑐𝑠𝑐 - Combined shape complexity metric 

𝐶𝑎𝑟 - Area ratio 

𝐶𝑏𝑟 - Benefit ratio 

𝐶𝑖 - Incremental cost 

𝐶𝑛ℎ - Hole ratio 

𝐶𝑝𝑟 - Part ratio 

𝐶𝐴𝑂 - Processing cost after optimization 

𝐶𝐵𝑂 - Processing cost before optimization 

𝐶𝑆 - Support structure cost 
(𝐶𝑆)𝐴𝑂   - Support structure cost after optimization 
(𝐶𝑆)𝐵𝑂  - Support structure cost before optimization 

𝑁ℎ - Number of holes 

𝑉𝑏 - Bounding box volume 

𝑉𝑖 - Number of viewpoints 

𝑉𝑝 - Volume of the part 

𝑤1  - Weightage of external shape complexity 

𝑤2 - Weightage of internal structure complexity 



 
 

12 
 

Abbreviations 

  

AM - Additive Manufacturing 

DFAM - Design for Additive Manufacturing 

DFM - Design For Manufacturing 

DSM - Design Structure Matrix 

DSS  - Decision Support System 

FN - Fuzzy Number 

FPWMSM - Fuzzy Power Weighted Maclaurin 

Symmetric Mean Operator 

GD - Generative Design 

HTT - Hamacher T-norm and T-conorm 

LO - Lattice Optimization 

L-PBF - Laser Powder Bed Fusion  

MCF - Modified Complexity Factor 

PC - Part Consolidation 

TO - Topology Optimization 
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