Annexure 'D'

Course Title	Discrete Data System	Course No	To be allotted later on by the office	
Specialization	Electronics Engineering	Structure (IPC)	3 0	3
Offered for	All streams of M Des, B Tech and Dual Degree	Status	Core 🗆	Elective
Pre-requisite	Control Systems	To take effect from		
Objectives	The purpose of this course is to present the fundamentals of the theory and application of digital control system. In particular, this course will provide methods for design and analysis of digital control system.			
Course Outcomes	Students will be introduced to the fundamental concepts, principles and application of digital control system analysis and design. Students will be able to design systems applying classical control methods as well as the modern control design.			
	Introduction to digital control Discrete time system representation, Mathematical modeling of sampling process, Data reconstruction (4) Modeling discrete-time systems by pulse transfer function Revisiting z-transform, Mapping of s-plane to z-plane, Pulse transfer function, Pulse transfer function of closed loop system. Sampled signal flow graph (6)			
Contents of the	function of closed loop system, Sampled signal flow graph (6) Design of sampled data control systems			
course	Lead, Lag and Lag-Lead compensator design using Bode plot and root locus (8)			
course	Deadbeat response design			
(With	Design of digital control systems with deadbeat response, Practical issues with deadbeat			
approximate	response design, Sampled data control systems with deadbeat response (6)			
break up of	Discrete state space models			
hours)	theorem, Pop	ov's stability		
	Theorem and circle criterion for stability (8)			
	State feedback and Output feedback design			
	Pole-placement by state feedback, Set point tracking controller, Full order observer, Reduced			
	order observer, output feedback design, Kalman Filter (6)			
	Introduction to optimal control			
	Basics of optimal control, Performance indices, Linear Quadratic Regulator (LQR) design (4)			
Text and	 Text Book: 1. M. Gopal, Digital Control and State Variable Methods, Tata Mcgraw Hill, 2/e, 2003. 2. G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of Dynamic Systems, Pearson Education, Asia, 3/e, 2000. Reference Books: 			
References	1. B. C. Kuo, Digital Control Systems, Oxford University Press, 2/e, Indian Edition, 2007.			
	 K. Ogata, Discrete Time Control Systems, Prentice Hall, 2/e, 1995. 			
	3. K. J. Astroms and B. Wittenmark, Computer Controlled Systems - Theory and Design,			
	Prentice Hall, 3/e, 1997.			