Course Title	Mechanical Design Simulation	Course Code			
Dept./ Specialization	Mechanical Engineering	Structure (LTPC)	20	4	4
To be offered for	B.Tech. Mechanical Engineering / Smart Manufacturing	Status	Core \square	Elective -	
Faculty Proposing the course	Venkata Timmaraju Mallina	Type	New	Modification	
Recommendation from the DAC		Date of DAC	9-1-2023		
External Expert(s)	Prof. Ratnakumar Annabattula, Professor, Mechanical Engineering, IIT Madras				
Pre-requisite	Mechanics of Materials	Submitted for app		$50^{\text {th }}$ Senate	
Learning Objectives	This course is proposed to offer - the connection between mechanical design and finite element analysis - the process of creating simulation models of various mechanical elements - an understanding of behavior of various mechanical components and structures subjected to static and dynamic forces - the process of evaluating the performance of new mechanical components / products / structures				
Learning Outcomes	After the completion of - create $1 \mathrm{D}, 2 \mathrm{D}$ an - understand the - evaluate the engineering simu	the course, studen d 3D simulation mo olution techniques designs of mecha lations.	Il be able of mechanical lable in compute systems by		gineering tools. ing appropriate
Contents of the course (With approximate break-up of hours for L/T/P)	Engineering design and analysis: Engineering design - Archer, Pahl and Beitz, Shigley and concurrent design processes, Engineering analysis - methods applied at various stages of design, Approximations for engineering analysis. $(L 4+P 4)$ Application of finite element method: Basic concepts and approximations, typical procedures and applications using commercial or open source codes. (L2+P4)				
	Creation of engineering simulation models and evaluation of displacements, stresses and reaction forces and moments of prismatic member structures (bars, trusses, beams and frames) subjected to steady state forces and moments. (L8+P16)				
	Creation of engineering simulation models of thin and thick plate or disc structures subjected to in-pane forces, pressure vessels and brackets to study stress concentration and distribution.				
	Creation of 1D and 2D engineering simulation models of composite walls or panels and chimney structures, respectively to study the steady state temperature distribution. Analysis of potential flows.(L4+P8)				
	Evaluation of natural frequencies and mode shapes of machine structures. (L2+P8)				
Text Book	1. S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS, Pearson 2020, ISBN: 978-0135212103.				
Reference Books	1. Nigel Cross, Eng ISBN: 978-1-119-7 2. Tai-Ran Hsu, App 3. Tirupathi R. Ch Elements in Engi 4. Erdogan Madenci in Engineering U	neering Design Me 72440-7. lied Engineering A andrupatla and neering, Cambridge and Ibrahim Guven sing ANSYS, Springe	s - Strategies for sis, Wiley, 2018, D. Belegundu Diversity Press, 2021 e Finite Element 015.	odu $\text { v: } 97$ trod	Design, Wiley, -1-119-07120-4. ction to Finite nd Applications

