
DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING
INDIAN INSTITUTE OF INFORMATION
TECHNOLOGY, DESIGN AND
MANUFACTURING KANCHEEPURAM
CHENNAI - 600127

Synopsis Of

Fault-Tolerant Adder and Multiplier Designs
for Mission Critical Systems

A Thesis

To be submitted by

SAKALI RAGHAVENDRA KUMAR

For the award of the degree

Of

DOCTOR OF PHILOSOPHY



1 Abstract
Adders and multipliers serve as critical components in the harsh environmental condi-
tions of space and mission-critical systems, where radiation and high temperatures pose
significant challenges. This research addresses the susceptibility of these circuits to
Single-Event Upsets (SEUs) induced by high-energy particles such as gamma rays and
alpha rays. While existing solutions incorporate redundant-based fault-tolerant tech-
niques, concerns persist regarding hardware overhead and system performance degrada-
tion. In response, our work introduces a novel preferential-based approach to fault toler-
ance, strategically reducing hardware overhead by 40% to 60% based on the input size
of adder and multiplier circuits. Despite the efficacy of redundant fault-tolerant tech-
niques, their lack of self-adaptability represents a notable limitation. To overcome this,
a bio-inspired hardware approach is pursued, leveraging Evolvable Hardware (EHW).
Previous EHW implementations encountered challenges related to scalability and error
recovery time.

A substantial contribution of this research is the development of self-healing de-
signs for adders and multipliers, implemented on a single Field-Programmable Gate
Array (FPGA) with a noteworthy 50% to 60% reduction in error recovery rates. An
integral aspect of this work is the proposal of an Amended Virtual Reconfiguration
Circuit (AVRC) for adders and multipliers, streamlining the bitstream and effectively
addressing scalability and hardware complexity challenges. This comprehensive ap-
proach includes error detection through a reference unit and recovery via a bitstream
generation unit. A comparative analysis demonstrates a significant reduction in error
rates when compared to existing methodologies. The proposed self-healing designs
mark a substantial advancement in fault-tolerant digital circuits, particularly in the de-
manding contexts of space and mission-critical systems. These advancements not only
enhance the reliability of adders and multipliers but also pave the way for more resilient
digital circuits in the stringent environments of space and mission-critical systems.

2 Objectives
• Examine the operational characteristics and design approaches of adder and mul-

tiplier circuits within the context of digital design used in mission-critical sys-
tems.

• Conduct extensive fault injection simulations in adder and multiplier circuits,
mimicking the behaviour of SEUs to analyze their impact on circuits.

• Conduct a detailed study on fault-tolerant techniques used to mitigate SEUs in
adder and multiplier circuits, including an analysis of their challenges.

• Design unique fault-mitigation approaches for adder and multiplier circuits to
address the challenges identified in existing works.

• Evaluate the proposed solutions considering metrics such as resource utilization,
delay, and fault recovery time.

• Compare and contrast the efficiency of the proposed solutions to state-of-the-art
fault mitigation approaches targeted for adder and multiplier circuits

1



3 Existing Gaps Which Were Bridged
• Conventional Fault-Tolerant Technique

– TMR and self-checking units are reliable and feasible as fault-tolerant tech-
niques, TMR requires more than 2× to 3× times the original hardware, and
similarly, self-checking units require extra MUX and XOR gates, as well
as the DMR technique, which scales up the hardware cost by more than
approximately 2.5× times compared to the original hardware. This major
challenge leads to a degradation in system performance due to increased
delay costs.

• Evolvable Hardware
– Configuration Bitstream Length: Many existing works have designed

adder and multiplier circuits with long bitstreams. This increases the search
space and prolongs the recovery rate of faults in the circuit, consequently
extending the evolution time of the circuit.

– Reconfiguration Technique: The evolution of configuration bits is not fea-
sible in non-commercial FPGAs designed for military and security appli-
cations. These FPGAs lack the DPR (Dynamic Partial Reconfiguration)
tool and port for configuring bits, and bitstream access is restricted by en-
cryption. Additionally, non-commercial FPGAs do not provide tools for
accessing the bitstream, while in commercial FPGAs, such tools are vendor-
specific.

– Complex VRC Architecture: The VRC-based adder and multiplier design
require a significant amount of resources, posing issues of insufficient re-
sources in FPGAs. Due to this limitation, many existing works have opted
for 2-bit and 3-bit size adders and multipliers.

– Fault Recovery Time: The recovery rate is a critical parameter for fault
correction in the circuit. There might be a chance of circuit failure if a
fault is not recovered within the required time, especially with genetic algo-
rithms. Longer configuration bitstream lengths, particularly in the case of
combinational circuits, can exacerbate this situation.

– Extrinsic/Hybrid Implementation: Many existing works have implemented
EHW using an extrinsic/hybrid approach. This may increase the circuit de-
lay and degrade system performance.

4 Most Important Contributions
• Contribution 1: Redundant-Based Fault-Tolerant Technique for Adder The

main objective of the proposed work is to mitigate single-event upsets (SEU)
in both integer and floating-point adders by reducing hardware utilization. We
address challenges in existing architectures through detailed analysis to improve
system performance.

• Contribution 2: Redundant-Based Fault-Tolerant Technique for Multiplier
The primary goal of this contribution is to mitigate SEU in both integer and
floating-point multipliers by reducing hardware utilization. We address chal-
lenges in existing architectures through detailed analysis to enhance system per-
formance.

2



• Contribution 3: Self-Healing Adder Design with an Intrinsic Approach The
proposed work aims to design a self-healing adder by addressing challenges in
evolvable hardware. The design incorporates an amended virtual reconfigurable
circuit and novel ideas to improve system performance. Also highlighted the
importance of the configuration bitstream regeneration unit.

• Contribution 4: Self-Healing Multiplier Design with an Intrinsic Approach
This contribution focuses on designing a self-healing multiplier by addressing
challenges in evolvable hardware. In this work, we reduced the configuration
bitstream of the AVRC adder to reduce time in the case of configuration bitstream
generation. Illustrated the comparison of the hybrid and intrinsic implementation
of the proposed work and shown the fault-recovery rate improved performance.

4.1 Redundant Fault-Tolerant Techniques for Adder
Adder is the primary component in datapath elements for processing the applications
of mission-critical systems. The mission-critical systems are operated in the radiation
environment. Digital components are sensitive to the radiation environment. High en-
ergy particles induce into the digital system and flip the data bit. This is known as a
Single Event Upset (SEU). The SEU will alter the result of the adder and cause the
system failure. Most of the existing works were integrated with either TMR (Triple
Modular Redundancy) or Self-Repair Adder (SRA) with adder circuits for mitigating
the SEUs. These techniques were reliable and generated the correct result. However
hardware overhead is the major challenge in these techniques. Because of this issue, de-
lay will arise and the system performance will be degraded, To address this challenge,
we proposed an approach with error analysis results.

In the proposed work, at the initial stage, the behaviour of SEU in adder was stud-
ied. The fault-injection simulator was designed to inject the single-bit fault in an adder
circuit by mimicking the behaviour of the SEU. The faults were injected randomly into
the circuit with respect to the resultant bit position. Later the generated error result
was calculated by using the original result of the adder. In this experimental work, we
injected the fault from the 0th-bit position to the N-1th position hardware element in
different adder sizes such as 8-bit, 16-bit, 32-bit, 64-bit and 128-bit.

4.1.1 Preferential Fault-Tolerant Adder

Based on the outcomes of the SEU analysis, we propose an innovative fault-tolerant
approach designed to reduce hardware utilization and enhance system performance,
particularly when contrasted with traditional fault-tolerant techniques. Traditional fault-
tolerant methods typically demand more hardware elements, which, in turn, elevate the
probability of failure. We aim to scale down the hardware overhead associated with
a fault-tolerant adder. In this approach, our focus centers on elements positioned in
the Most Significant Bit (MSB). In a binary format, MSBs bear greater significance
in weight. Consequently, errors occurring in the MSB-positioned elements result in
a notably higher error percentage in the adder’s output. This approach strategically
addresses the pivotal role of MSBs in influencing the accuracy of the adder’s results
while concurrently aiming to reduce the hardware complexities inherent in conventional
fault-tolerant strategies.

In an adder operation, the input with an N-bit size will generate an output with an
N+1-bit size. After observing the SEU analysis for different adder lengths, it was identi-

3



A0B0A1A2A3A4A5A6A7 B1B2B3B4B5B6B7

HAFAFAFAFAFAFAFA

C0C1C2C3C4C5C6

S0S1S2S3S4S5S6S7S8

FA

FA

FA

voter

Cin

Sum

Cout

Cout

Cout

Figure 1: 8-bit fault-tolerant adder with preferential TMR approach

fied that the bit positions that hold the error percentage equal to or greater than 6 are the
most critical. This criticality was identified with an error distance when compared with
the original, as shown in Table 1. So, the last four MSB positions are considered critical
bit positions. Apart from these four MSB positions, fault occurrences in any bit position
don’t have much impact on the result. So, we designed a fault-tolerant adder by prefer-
ring fault-tolerant techniques at the MSB-positioned hardware, as shown in Figure 1.
This proposed approach can be used for any kind of adder circuit with fault-tolerant
techniques such as redundant technology. This technique can be used for applications
such as robotics and rovers, multimedia applications, geospatial satellite applications,
and digital signal processing applications where fault occurrences in LSB are accept-
able.

Table 1: Error percentage of 8-bit Adder

Carry
bit

position

Input 1
(Binary
value)

Input 2
(Binary
value)

Input 1
(Decimal
Value)

Input 2
(Decimal
Value)

Original
Carry

Original
sum

Original
sum
(decimal
value)
(x1)

Carry
bit flip
Position

Error
Carry

Error
sum

Error
Sum
(decimal
value)
(x2)

Error
distance
b/w
x1 &
x2

Error
Percentage

0 11111111 11111111 255 255 11111111 111111110 510 0 11111110 111111100 508 2 0.39
1 11111111 11111111 255 255 11111111 111111110 510 1 11111101 111111010 506 4 0.78
2 11111111 11111111 255 255 11111111 111111110 510 2 11111011 111110110 502 8 1.56
3 11111111 11111111 255 255 11111111 111111110 510 3 11110111 111101110 494 16 3.13
4 11111111 11111111 255 255 11111111 111111110 510 4 11101111 111011110 478 32 6.27
5 11111111 11111111 255 255 11111111 111111110 510 5 11011111 110111110 446 64 12.54
6 11111111 11111111 255 255 11111111 111111110 510 6 10111111 101111110 382 128 25.09
7 11111111 11111111 255 255 11111111 111111110 510 7 01111111 011111110 254 256 50.19

4.1.2 Implementation and Results

Proposed works such as PrTMR adder and PrSRA adder were designed on the Libero
SOC 11.8 IDE tool by targeting the A3PE3000 FPGA to analyse LUT utilisation and
delay. So, we implemented existing work, and proposed work for different input sizes,
such as 8-bit, 16-bit, and 32-bit, using HDL. The implementation results provide details
in the form of LUTs and delays. This practical result provides proof that the proposed
work is a better solution for implementing fault-tolerant circuits as shown in Table 2
and Table 3.

4.2 Redundant Fault-Tolerant Techniques for Multiplier
Multiplication is an essential operation to perform various numerical calculations. The
process of multiplier operations can be complicated and sometimes leads to delays
based on the input size. There is a chance of SEUs in combinational circuits due to

4



Table 2: LUTs Utilization

Adder
Input
Size

Adder
without
Fault-

Tolerant

Existing Work Proposed Work

TMR based Adder
Zhao et al. (2018),

Li et al. (2020)

SRA
based

Adder SRA based Adder
Kumar and Sharma (2016),

Palsodkar et al. (2018)

PrTMR
based
Adder

PrSRA
based
Adder

8-bit 16 57 72 40 48
16-bit 32 113 164 56 79
32-bit 64 226 289 88 113

Table 3: Delay(ns)

Adder
Input
Size

Adder
without
Fault-

Tolerant

Existing Work Proposed Work
TMR based Adder
Zhao et al. (2018),

Li et al. (2020)

SRA based Adder
Kumar and Sharma (2016),

Palsodkar et al. (2018)

PrTMR
based
Adder

PrSRA
based
Adder

8-bit 1.829 3.462 4.234 2.131 2.543
16-bit 2.155 3.574 4.412 2.157 2.671
32-bit 2.899 3.693 4.524 2.279 2.823

radiation effects or external disturbance sources. In existing works, multiplier designs
were integrated with TMR and SRA to design fault-tolerant multipliers. These con-
ventional fault-tolerant techniques provide reliable results in the radiation environment
by mitigating SEUs. The standalone multiplier circuit is complex apart from this fault-
tolerant technique enhancement will scale up the hardware and increase the delay. To
overcome these challenges, we proposed a novel approach using error analysis. This is
similar to the adder.

4.2.1 Preferential Fault-Tolerant Multiplier

In a multiplier, the generation of a 2 × N -bit output is driven by two N-bit inputs.
While Single Event Upsets (SEUs) may occur at any point within the multiplier during
its operation, it is recognized that the partial products play a critical role. Errors at
this stage can lead to potential error propagation, particularly given the significance of
partial products in ensuring the accuracy of the result. To investigate the impact of
errors, we strategically selected the partial products for fault injection, considering the
result bit positions ranging from 0-bit to 2 × N − 1 bit randomly. Experimental trials
were conducted with varying bit lengths, including 4, 8, 16, 32, and 64, using two N-bit
inputs. The outcomes of these experiments were meticulously recorded for each bit
length of the multiplier. Subsequently, the error analysis results for each multiplier size
architecture were utilized to discern critical and non-critical error bit positions within
the resultant multiplier.

4.2.2 Results and Implementation

PrTMR based multiplier and PrSRA based multiplier, along with existing work, were
implemented on the Xilinx Vivado by targeting the Zync-7000 FPGA. 8 × 8 (Error

5



Table 4: 8-Bit Error Percentage Results

Error
injection in

PP w.r.t
Result

Bit Position

X
(Decimal)

X
(Binary)

Y
(Decimal)

Y
(Binary)

Result
(Decimal)

X1

Result
(Binary)

Result
after
error

injection
(Decimal)

X2

Result
after
error

injection
(Binary)

Error
Distance

b/w
X1 & X2

Error
%

0 255 11111111 255 11111111 65025 1111111000000001 65024 1111111000000000 1 0.00153
1 255 11111111 255 11111111 65025 1111111000000001 65023 1111110111111111 2 0.00307
2 255 11111111 255 11111111 65025 1111111000000001 65021 1111110111111101 4 0.00615
3 255 11111111 255 11111111 65025 1111111000000001 65017 1111110111111001 8 0.01230
4 255 11111111 255 11111111 65025 1111111000000001 65009 1111110111110001 16 0.02460
5 255 11111111 255 11111111 65025 1111111000000001 64993 1111110111100001 32 0.04921
6 255 11111111 255 11111111 65025 1111111000000001 64961 1111110111000001 64 0.09842
7 255 11111111 255 11111111 65025 1111111000000001 64897 1111110110000001 128 0.19684
8 255 11111111 255 11111111 65025 1111111000000001 64769 1111110100000001 256 0.39369
9 255 11111111 255 11111111 65025 1111111000000001 64513 1111110000000001 512 0.78738

10 255 11111111 255 11111111 65025 1111111000000001 64001 1111101000000001 1024 1.5747
11 255 11111111 255 11111111 65025 1111111000000001 62977 1111011000000001 2048 3.1495
12 255 11111111 255 11111111 65025 1111111000000001 60929 1110111000000001 4096 6.29911
13 255 11111111 255 11111111 65025 1111111000000001 56833 1101111000000001 8192 12.5982
14 255 11111111 255 11111111 65025 1111111000000001 48641 1011111000000001 16384 25.1964
15 255 11111111 255 11111111 65025 1111111000000001 32257 0111111000000001 32768 50.3929

Analysis shown in Table 4) and 16 × 16 size multipliers are considered for the imple-
mentation of the proposed work. The efficiency of the proposed work was analysed
based on the utilisation of LUTs and delay. Table 5 represents the LUTs and delay of
existing and proposed work.

Table 5: Utilization of Resource and Delay

Works Types Input
Size LUTs Delay

(ns)

Existing
Work

TMR based Multiplier
Zhao et al. (2018)

8x8 1256 67.124
16x16 2600 126.245

SRA based Multiplier
Kumar and Sharma (2016)

8x8 1229 55.21
16x16 2558 116.32

Proposed
Work

PrTMR
based Multiplier

8x8 669 47.869
16x16 1358 89.562

PrSRA
based Multiplier

8x8 629 36.52
16x16 1298 72.26

4.3 Self-Healing Adder Design with an Intrinsic Approach
Evolvable Hardware (EHW) is a bio-inspired technique used in designing fault-tolerant
circuits. The EHW-based fault-tolerant technique overcomes the major limitation like
self-healing which is not in conventional fault-tolerant techniques. The other limitation
as the size of the circuit increases, the delay may also increase. EHW has a nature of
self-healing. Most of the existing works used extrinsic/ hybrid implementation. There
are some challenges present in the existing that are listed in Section 3. Those challenges
are achieved by our contributions as follows.

• The adder circuit was implemented by amending the structure of the VRC archi-
tecture. This approach scales down the hardware complexity and configuration
bitstream length.

6



• Proposed a novel configuration bitstream reconstruction algorithm by replacing
the evolutionary algorithm to reduce the fault-recovery rate.

• The intrinsic-based implementation was used to improve the system’s perfor-
mance.

The proposed self-healing adder consists of four major modules such as VRC adder,
Reference Output Generator (ROG) unit, error detection unit and configuration bit-
stream reconstruction unit.

4.3.1 Proposed Amended VRC (AVRC) Adder

The VRC is a kind of reconfiguration mechanism used in evolvable hardware. VRC
is designed with MUX elements and this acts as a second fabric layer on FPGA. We
have modified the structure of VRC-based specific functionality and reduced the max-
imum hardware compared to existing works and named as Amended VRC (AVRC).
The AVRC adder works based on user configuration bitstream. In this mechanism, the
circuit control will be in the hands of the designer. AVRC adder consists group of PEs
(Programmable Elements). In the proposed work each PE consists of two 5:1 MUX
for selecting inputs and one 4:1 mux for adder functionality. The 4-bit AVRC adder
requires a total of 17 PEs. Each PE requires 8 bits and a total of 132 bits are required to
operate the AVRC adder.

4.3.2 ROG and Error Detection Unit

The ROG unit is designed using a full-adder LUT, this unit is operated by passing
inputs of the original unit. The full-adder truth table information is stored in flash
memory. The sum and carry bits are accessed using inputs. Both adders were operated
simultaneously. After this point, both results were compared using the XOR operator.
If the resultant of XOR has 1’s bits, then it enables the signal for configuration bitstream
reconstruction.

4.3.3 Configuration Bitstream Reconstruction Unit

The Configuration Bitstream Reconstruction (CBR) unit has been designed to generate
the bitstream based on the structure of the AVRC adder. This unit is implemented using
integer sequence generators. The sequence generator generates the required bits based
on the size of MUX and the size of the adder. The generated bits are concatenated and
arranged using the structure of the AVRC adder. This is used instead of the evolutionary
algorithm and it doesn’t require any search space. The fault-recovery will be improved
using proposed CBR unit.

4.3.4 Implementation and Results

The experimental work was conducted with 4-bit and 8-bit adders to assess the ef-
ficiency of the proposed approach. The fault-tolerant self-healing adder prototype and
the algorithm hardware testing were hosted on the Proasic3e 3000 FPGA. All four mod-
ules of proposed were designed in HDL using the Libero SOC design suite 11.8. The
proposed work for 4-bit and 8-bit adders takes around 12.32 ns and 26.25 ns to generate
fault-free results, respectively. In Jian et al.’s work Jian and Mengfei (2018), the 2-bit
adder took approximately 17 milliseconds of evolution time using a hybrid approach.
We analyzed Jian’s adder with a 4-bit input, and it took around 38 milliseconds to evolve

7



a circuit. In Cancare et al.’s work Cancare et al. (2012), the evolution time for a 4-bit
adder took approximately 34 minutes to achieve a fault-free result. However, it was
implemented using the DPR mechanism with an extrinsic approach. The comparison
of the evolution time of existing works and the proposed work is shown in Table 6. In
contrast to previous work, the proposed work evolves the circuit more efficiently during
fault occurrence.

Table 6: Comparing the evolution time of a proposed work with existing works

Works Adder size
Reconfiguration

mechanism
Evolvable
approach

Error recovery
time

Existing works
4-bit Cancare et al. (2012) DPR Extrinsic 2040 s

4-bit Jian and Mengfei (2018) VRC Extrinsic 0.038 s

Proposed work
4-bit VRC Intrinsic 12.32 ns

16-bit VRC Intrinsic 26.25 ns

The area occupancy of the proposed work is accounted for in terms of IO Ports,
LUTs, and flashROM utilization. Consequently, the resource usage and recovery time
of the proposed work are compared with similar works discussed in the related liter-
ature. The proposed work exhibits LUT utilization of 53.64%, which is lower than
existing works for both sizes of adders. Additionally, IO Ports and FlashROM were uti-
lized 42.77% and 54.9% less, respectively, than in previous works. Hence, the resource
utilization of the proposed work is 50% lower than that of existing works as shown in
Table 7

Table 7: Hardware utilization of Proposed Work

Adder
size

Resources Available
Proposed Self-Healing Adder

with AVRC
Existing EHW Adder
with standard VRC

Utilization Utilization% Utilization Utilization%

4-bit

LUTs 75264 15 0.0199 32 0.0425
IO Ports 620 55 8.870 95 15.32
FlashROM 1024 200 19.53 430 41.99

8-bit

LUTs 75264 33 0.0438 72 0.0956
IO Ports 620 112 18.06 198 31.94
FlashROM 1024 400 39.06 840 82.03

4.4 Self-Healing Multiplier Design with an Intrinsic Approach
We introduce a fault-tolerant multiplier designed to counteract single-event upsets. This
multiplier architecture draws parallels with evolvable hardware paradigms. Consisting
of three integral modules, namely, an amended VRC-based multiplier, an error diag-
nosis unit, and a configuration bitstream generator, the proposed self-healing multi-
plier boasts both adaptability and functionality akin to evolvable hardware, particularly
in fault recovery. The sole distinction lies in the configuration bitstream generation
process. Our innovation centers on a novel Configuration Bitstream Generator (CBG)
aimed at improving the error recovery speed. The design encompasses a memory-based
multiplier complemented by a comparator dedicated to error detection. In this unit, the

8



outcome of the VRC multiplier is cross-referenced with that of the memory-based mul-
tiplier.

Most of the existing works have implemented a 2-bit or 3-bit multiplier. In this
work, we present the design of an Amended VRC-based multiplier. To address scala-
bility concerns and streamline memory complexity, we divide the multiplier into three
segments. The first segment details the selection of input bits (multiplicand and multi-
plier) using 4:1 multiplexers. The second segment covers partial product generation via
2:1 multiplexers. The third segment focuses on partial product reduction using VRC
adder modules. This modular approach aims to enhance both the multiplier’s perfor-
mance and memory efficiency.

4.4.1 Implementation Results

The performance and effectiveness of the self-healing multiplier were assessed through
simulations conducted on an A3PE3000 FPGA employing a 4 × 4, and 8 × 8 multi-
pliers and results are shown in Table 8 and Table 9. The proposed approach utilized
intrinsic-based methods and operated on a single FPGA. An HDL-based fault injec-
tion simulator was developed specifically for targeting internal elements in the circuit.
These artificially induced faults were utilized to assess the system’s ability to detect
and recover from errors, showcasing its reliability and effectiveness even under fault
conditions.

Table 8: Resource Utilization of Existing and Proposed Work

Work Fault-Tolerant
Multiplier Mechanism Approach Multiplier

Size

#LUTs
(Available-75264)

IO Ports
(Available-620)

Utilized Utilization % Utilized Utilization %

Existing
EHW

Multiplier
Standard

VRC Hybrid
(on M1A3PE3000)

4× 4 225 0.298% 308 49.6%
8× 8 548 0.728% 614 99%

Proposed
Self-Healing

Multiplier
Amended

VRC

4× 4 75 0.099% 134 21%
8× 8 173 0.229% 286 46%

Intrinsic
(on A3PE3000)

4× 4 86 0.114% 142 22.9%
8× 8 194 0.257% 302 48.7%

Table 9: Comparison of Proposed Work Resources Reduction w.r.t Existing Work

Proposed Work Approach Multiplier Size LUT Reduction % IO Port Reduction %

Self-Healing Multiplier
Intrinsic

4× 4 61.78% 53.89%
8× 8 64.59% 56.49%

Hybrid
4× 4 66.67% 50.81%
8× 8 68.43% 53.42%

The proposed work has been realized through two distinct approaches: embedded
microprocessor-based FPGAs and standalone FPGAs. In the context of the proposed
work that employs a genetic algorithm, it was implemented using a hybrid approach on
the M1A3PE3000 platform. In this particular implementation, a genetic algorithm was
deployed on the ARM processor integrated within the FPGA to generate the bitstream.
Additionally, an AVRC multiplier and an error detection unit were instantiated on the
FPGA to scrutinize hardware resource utilization. However, this approach received
limited appreciation due to its longer error recovery time, as shown in Table 10.

9



Table 10: Comparison of Error Recovery Time in Existing and Proposed Work

Works Mechanism Approach Algorithm Multiplier
Size Time

Existing
work

VRC

Extrinsic
Genetic

Algorithm Wang and Lee (2014) 3× 3 <5 min

EA-HRS
Algorithm Huang et al. (2015) 4× 4 1350.721 s

Intrinsic
Genetic

Algorithm Suhas et al. (2021) 2× 2
500 ns

HS Clone
Algorithm Suhas et al. (2021) 180 ns

Hybrid

Genetic
Algorithm Shang et al. (2020)

4× 4 3.2 s
8× 8 5.4 s

DPR
Genetic

Algorithm Cancare et al. (2012) 6× 6 2.6 hrs

Proposed
Work

VRC

Genetic
Algorithm

4× 4 2.6 s
8× 8 4.8 s

Intrinsic
CBG

Algorithm
4× 4 15.25 ns
8× 8 29.25 ns

5 Conclusions
In the proposed work, we initially focused on redundant-based fault-tolerant techniques.
Challenges were identified during the implementation of redundant-based techniques
with adders and multipliers. In the case of TMR and self-check units, hardware costs
increased, leading to delays. However, our preferential approach resulted in decreased
hardware costs for TMR-based adders and multipliers, as well as SRA-based adders
and multipliers. The PrTMR adder demonstrated a reduction in hardware costs ranging
from 29% to 61%, depending on the adder size, compared to the TMR adder. Similarly,
the PrSRA-based adder showed a hardware cost reduction ranging from 33% to 60%
compared to the TMR adder. For multipliers, PrTMR and PrSRA both contributed to
a hardware reduction of 46% to 47%, depending on the multiplier size, compared to
TMR. Despite these advancements, limitations such as self-healing in redundant-based
techniques persisted. To address this, we proposed a self-healing adder and multiplier
by considering evolvable hardware as a foundational study. The self-healing adder re-
duced hardware costs by 50% compared to existing EHW adders. Similarly, the self-
healing multiplier with an intrinsic approach exhibited a hardware reduction of 61% to
64% compared to EHW. Importantly, the self-healing multiplier not only improved fault
recovery rates but also enhanced overall performance. These findings collectively high-
light the significant advancements achieved in fault-tolerant techniques, with notable
improvements in hardware efficiency and fault recovery rates.

6 Organization of the Thesis
(a) Chapter 1: Introduction

(b) Chapter 2: Related Works

(c) Chapter 3: Redundant-Based Fault-Tolerant Technique for Adder

(d) Chapter 4: Redundant-Based Fault-Tolerant Technique for Multiplier

10



(e) Chapter 5: Self-Healing Adder Design with an Intrinsic Approach

(f) Chapter 6: Self-Healing Multiplier Design with an Intrinsic Approach

(g) Chapter 7: Conclusion and Future Scope

7 List of Publications
I REFEREED JOURNALS BASED ON THE THESIS

i. Sakali Raghavendra Kumar, P Balasubramanian, Ramesh Reddy, Sreehari Veera-
machaneni, and Noor Mahammad Sk, "Optimized Fault-Tolerant Adder De-
sign using Error Analysis" was published in the Journal of Circuits, Systems
and Computers - World Scientific, Volume No. 32, Issue No. 06, Article No.
2350091, Year 2023.

ii. Raghavendra Kumar Sakali, Noor Mahammad Shak, "Intrinsic based Self-
Healing Adder Design Using Chromosome Reconstruction Algorithm" was
published in the Journal of Electronic Testing - Springer, Volume No. 39,
Year 2023

iii. Raghavendra Kumar Sakali, Sreehari Veeramachaneni, Noor Mahammad SK.
"Preferential Fault-Tolerance Multiplier Design to Mitigate Soft Errors in FP-
GAs" was published in the Journal of VLSI Integration - Elsevier, Volume No.
93, Article No. 102068, Year 2023.

iv. Raghavendra Kumar Sakali, Noor Mahammad Sk. "Intrinsic-based Self-Healing
Multiplier with Configuration Bitstream Generator" was communicated to
IEEE Transactions on Circuits and Systems I: Regular Papers).

II PUBLICATIONS IN CONFERENCES BASED ON THE THESIS
i. S Raghavendra Kumar, Noor Mahammad Sk, S Balasubramanian, and G Venkat

Reddy, "Novel Embryonics Adder Architecture with Unicellular Self-Check
Unit", in 2nd International Conference on Emerging Trends in Engineering
(ICETE 2023)

ii. Raghavendra Kumar Sakali, Sreehari Veeramachaneni, Noor Mahammad SK,
"Fault-Tolerant Floating-Point Multiplier Design for Mission Critical Sys-
tems", proceedings of the 37th International Conference on VLSI Design and
23rd International Conference on Embedded Systems, Jan 2024.

iii. Raghavendra Kumar Sakali, Sreehari Veeramachaneni, Noor Mahammad SK,
"Preferential Fault-Tolerant Based Bfloat16 Multiplier", communicated to IEEE
International Symposium on Circuits & Systems 2024.

References
1. Cancare, F., D. B. Bartolini, M. Carminati, D. Sciuto, and M. D. Santambrogio (2012).

On the evolution of hardware circuits via reconfigurable architectures. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 5(4), 1–22.

2. Huang, X., N. Wu, X. Zhang, and Y. Liu (2015). An evolutionary algorithm based on novel hy-
brid repair strategy for combinational logic circuits. IEICE Electronics Express, 12–20150765.

11



3. Jian, G. and Y. Mengfei (2018). Evolutionary fault tolerance method based on virtual recon-
figurable circuit with neural network architecture. IEEE Transactions on Evolutionary Compu-
tation, 22(6), 949–960, doi:10.1109/TEVC.2017.2779874.

4. Kumar, P. and R. K. Sharma (2016). Real-time fault tolerant full adder design for critical
applications. Engineering science and technology, an international journal, 19(3), 1465–1472.

5. Li, Y., A. Breitenreiter, M. Andjelkovic, J. Chen, M. Babic, and M. Krstic (2020). Double
cell upsets mitigation through triple modular redundancy. Microelectronics Journal, 96, 104683.

6. Palsodkar, P., P. Palsodkar, and R. Giri (2018). Multiple error self checking-repairing fault
tolerant adder-multiplier. In 2018 IEEE Region 10 Humanitarian Technology Conference (R10-
HTC). IEEE.

7. Shang, Q., L. Chen, J. Cui, and Y. Lu (2020). Hardware evolution based on improved simu-
lated annealing algorithm in cyclone v fpsocs. IEEE Access, 8, 64770–64782.

8. Suhas, S., G. Malhotra, and V. Rajini (2021). Hsclone genetic algorithm implementation on a
combinational circuit. IETE Journal of Research, 1–9.

9. Wang, J. and C.-H. Lee (2014). Virtual reconfigurable architecture for evolving combinational
logic circuits. Journal of Central South University, 21(5), 1862–1870.

10. Zhao, Z., N. T. Nguyen, D. Agiakatsikas, G. Lee, E. Cetin, and O. Diessel (2018). Fine-
grained module-based error recovery in fpga-based tmr systems. ACM Transactions on Recon-
figurable Technology and Systems (TRETS), 11(1), 1–23.

12

https://doi.org/10.1109/TEVC.2017.2779874

	Abstract
	Objectives
	Existing Gaps Which Were Bridged
	Most Important Contributions
	Redundant Fault-Tolerant Techniques for Adder
	Preferential Fault-Tolerant Adder
	Implementation and Results

	Redundant Fault-Tolerant Techniques for Multiplier
	Preferential Fault-Tolerant Multiplier
	Results and Implementation

	Self-Healing Adder Design with an Intrinsic Approach
	Proposed Amended VRC (AVRC) Adder
	ROG and Error Detection Unit
	Configuration Bitstream Reconstruction Unit
	Implementation and Results

	Self-Healing Multiplier Design with an Intrinsic Approach
	Implementation Results


	Conclusions
	Organization of the Thesis
	List of Publications

