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1 Abstract
A graph is called a star if it is isomorphic to the complete bipartite graph K1,r for some r ≥ 0.
When a graph models a network, like a road or computer network, each induced subgraph that
is a star corresponds to a subnetwork that is a star network. The center of an induced star in such
a graph potentially corresponds, in the underlying network, to either a bottleneck or a point that
is desirable for locating some facilities; this is especially the case when the star has more than
two vertices. Motivated by these practical considerations as well as their combinatorial appeal,
we initiate the study two optimization problems, namely STAR COVER and STAR PARTITION,
whose definitions appear below.

Consider any graph G = (V,E). We also call any subset S of V a star of G if the subgraph
induced by S, namely G[S], is a star. A collection S = {V1, . . . , Vk} of stars of G is called a
star cover of G if V1 ∪ . . . ∪ Vk = V . A star cover S of G is called a star partition of G if it
is also a partition of V . The minimum k for which G admits a star cover of size k is called the
star cover number of G and is denoted by sc(G). The minimum k for which G admits a star
partition of size k is called the star partition number of G and is denoted by sp(G).

In our work, we study the following problems.

STAR COVER

Input: A graph G.
Output: A minimum star cover of G.

STAR PARTITION

Input: A graph G.
Output: A minimum star partition of G.

Both STAR COVER and STAR PARTITION are NP-hard in general. In this thesis, we obtain
several structural, algorithmic and hardness results for both the problems restricted to many
natural graph classes.

We obtain the following inequalities and identities involving the star cover number sc(G)
and the star partition number sp(G). Here γ(G) denotes the domination number and χ(G)
denotes the chromatic number of a graph G. Also a graph H is called a butterfly graph if its
vertex set partitions into a universal vertex and an induced 2K2. Each of these inequalities and
identities has interesting algorithmic consequences.

• For any triangle-free graph G, sp(G) = sc(G) = γ(G).

• For any butterfly-free graph G, sp(G) = sc(G).

• For any co-disconnected graph G, χ(G)/2 ≤ sc(G) ≤ χ(G).

• For any graph G, max{γ(G), χ(G)/2} ≤ sc(G) ≤ min{sp(G), γ(G) · χ(G)}.

In this thesis, we also show that deciding whether an input graph can be covered by or
partitioned into at most two stars has polynomial time algorithms but deciding whether an
input graph can be covered by or partitioned into k stars is NP-complete for each fixed k ≥ 3;
these problems remain NP-complete even for K4-free graphs. Consequently, we have that
STAR COVER and STAR PARTITION are NP-hard, even for K4-free graphs.
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We prove that it is NP-hard to approximate STAR COVER and STAR PARTITION within
n1/2−ϵ for all ϵ > 0, even for graphs of diameter two; see also Zuckerman (2007). Also both
STAR COVER and STAR PARTITION do not have any polynomial time c log n-approximation
algorithm for some constant c > 0 unless P = NP; see Vazirani (2013).

From the literature on set partition (k-partition), it also follows that both problems have
exact (a) 2nnO(1) time and exponential space algorithms and (b) 3nnO(1) time and polynomial
space algorithms; see Björklund et al. (2009).

As already mentioned, we prove that sp(G) = sc(G) = γ(G) for any triangle-free graph
G, where γ(G) denotes the domination number of G. In fact, our proof implies that the well-
known DOMINATING SET problem is polynomially equivalent to each of STAR COVER and
STAR PARTITION. Consequently, from the literature on DOMINATING SET, we have the fol-
lowing for both STAR COVER and STAR PARTITION: (1) The problems are NP-hard for (a)
chordal bipartite graphs (see also Müller and Brandstädt (1987)), (b) (C4, C6, . . . , C2t)-free bi-
partite graphs for every fixed t ≥ 2 (see also Duginov (2014)) and (c) subcubic bipartite planar
graphs (see also Garey and Johnson (1979)). (2) The problems have (a) O(n2) time O(log n)-
approximation algorithms for triangle-free graphs and (b) O(n2) time (d + 1)-approximation
algorithm for triangle-free graphs of degree at most d (see also Vazirani (2013)). (3) The
problems have exact polynomial time algorithms for bipartite permutation graphs (see Brand-
städt and Kratsch (1985); Farber and Keil (1985)), convex bipartite graphs (see Bang-Jensen
et al. (1999); Damaschke et al. (1990)), doubly-convex bipartite graphs (see Bang-Jensen et al.
(1999)) and trees (see Cockayne et al. (1975)). (4) With the number of stars in a star cover/par-
tition as the parameter, from the work of Raman and Saurabh (2008), it follows that both the
problems are W[2]-complete for bipartite graphs and are fixed parameter tractable for graphs
of girth at least five (for an introduction to parameterized complexity one may refer to Downey
and Fellows (2013)).

We also prove that both STAR COVER and STAR PARTITION are NP-hard for K1,r-free
graphs for each fixed r ≥ 3 (in fact, the problems are NP-hard even for line graphs; see
also Dor and Tarsi (1997)). Further, we present a polynomial time r

2
-approximation algo-

rithm for STAR PARTITION on K1,r-free graphs (which implies a 3
2
-approximation algorithm

for STAR PARTITION, for instance, on line graphs and cobipartite graphs as they are claw-free);
see also Kelmans (1997). We also prove that both the problems are NP-hard for co-tripartite
graphs, a subclass of K1,4-free graphs; see also Maffray and Preissmann (1996).

For STAR COVER, we obtain a simple O(n2t(n)) time O(log n)-approximation algorithm
for any hereditary graph class for which the maximum independent set can be computed in
time O(t(n)). Consequently, we have a polynomial time O(log n)-approximation algorithm
for STAR COVER on perfect graphs. We also observe that, for some c > 0, STAR COVER does
not have a polynomial time c log n-approximation algorithm for perfect graphs assuming P ̸=
NP.

As already remarked, we prove that sp(G) = sc(G) for any butterfly-free graph G. (A
graph H is called a butterfly graph if its vertex set partitions into a universal vertex and an
induced 2K2.) This result leads to O(n14) time O(log n)-approximation algorithms for both
STAR COVER and STAR PARTITION on butterfly-free graphs. We also observe that, for some
c > 0, neither of the problems has a polynomial time c log n-approximation algorithm for
butterfly-free graphs assuming P ̸= NP.

For both STAR COVER and STAR PARTITION, we have the following results on cographs
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and its subclasses: (1) O(n2) time exact algorithms for trivially perfect graphs ((C4, P4)-
free graphs). (2) O(n2) time exact algorithms for co-trivially perfect graphs ((2K2, P4)-free
graphs). (3) Linear time exact algorithms for threshold graphs ((C4, 2K2, P4)-free graphs). For
STAR COVER, we obtain a linear time 2-approximation algorithms for cographs.

For both STAR COVER and STAR PARTITION, we obtain the following results on split
graphs: (1) The problems are NP-hard even for K1,5-free split graphs for which the maximum
degree of independent part vertices is three. (2) The problems have linear time exact algorithms
for claw-free split graphs. (3) The problems have (a) linear time 2-approximation algorithms
for split graphs and (b) O(mn

3
2 ) time 3

2
-approximation algorithms for K1,4-free split graphs.

We also obtain similar approximation algorithms for two superclasses of split graphs, namely
split-like graphs and multisplit graphs.

Double-split graphs constitute an interesting class of perfect graphs and played an impor-
tant role in the proof of Strong Perfect Graph Theorem; see Chudnovsky et al. (2006). We
design O(n7) time exact algorithms for both STAR COVER and STAR PARTITION on double-
split graphs. To show that the analyses of our algorithms are tight, we construct an intricate
infinite family of double-split graphs with several properties. We also design a simple linear
time algorithm for recognizing double-split graphs. Our work also suggests a useful succinct
matrix representation for any double-split graph.

2 Objectives
• To understand the relation between star cover and star partition numbers sc(G) and sp(G)

as well as their relation to other graph parameters when restricted to natural graph classes.

• To determine the computational complexity of both STAR COVER and STAR PARTITION

on natural graph classes.

• To design good approximation algorithms and to prove matching inapproximabilty re-
sults for both the problems on natural graph classes.

3 Existing Gaps which were Bridged
DOMINATING SET and COLOURING are two well-known problems in the algorithms literature;
see, for instance, Haynes et al. (1998) and Jensen and Toft (2011). Both STAR COVER and
STAR PARTITION have some attributes of each of these classical problems. A star in a graph
is essentially an independent set along with one exclusive vertex that dominates it. For each
1 ≤ j ≤ k, suppose Zj = {xj} ∪ Xj is a star in a graph G with xj as a center vertex. If
S = {Z1, . . . , Zk} is a star cover (parition) of G, then {x1, . . . , xk} is a dominating set of G.
Also the independent parts X1, . . . , Xk can be assumed disjoint even if S is a star cover of G
by a result on star covers.

Kelmans (1997) considers the problem of covering a maximum number of vertices of the
input graph by vertex-disjoint induced stars of the form K1,i, 1 ≤ i ≤ r, where r ≥ 1 is any
fixed positive integer. He obtains a polynomial time algorithm for this problem.
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The problem of partitioning (the vertex set of) an input graph into induced paths of length t
(t ≥ 3 is fixed) is NP-complete even for bipartite graphs with maximum degree three; see Mon-
not and Toulouse (2007). This result implies that the problem of partitioning a graph into in-
duced K1,2’s is NP-complete, even when restricted to bipartite graphs with maximum degree
three.

The problem of partitioning an input graph into equal but fixed size stars, not necessarily in-
duced, is investigated for many natural subclasses of perfect graphs in Van Bevern et al. (2017).
(This problem is also referred to as STAR PARTITION in that paper.) This problem had already
been shown to be NP-complete even when the star size is fixed to be three; see Kirkpatrick and
Hell (1978).

Given a graph G and a positive integer k, the problem of deciding whether G can be par-
titioned into exactly k (not necessarily induced) stars, each of size at least two, is investigated
by Andreatta et al. (2019).

Our work on STAR COVER and STAR PARTITION provides a bridge between the dominating
set and vertex coloring problems. Our problems also fit into the context of the above-mentioned
related problems.

4 Most Important Contributions
Bounds on STAR COVER and STAR PARTITION

• For any triangle-free graph G, sp(G) = sc(G) = γ(G).

• For any butterfly-free graph G, sp(G) = sc(G).

• For any co-disconnected graph G, χ(G)/2 ≤ sc(G) ≤ χ(G).

• For any graph G, max{γ(G), χ(G)/2} ≤ sc(G) ≤ min{sp(G), γ(G) · χ(G)}.

Deciding if a few Stars Suffice

• Deciding whether an input graph can be covered by or partitioned into at most two stars
has polynomial time algorithms.

• Deciding whether an input graph can be covered by or partitioned into k stars is NP-
complete for each fixed k ≥ 3 even when restricted to K4-free graphs.

• Consequently, STAR COVER and STAR PARTITION are NP-hard even for K4-free graphs.

Inapproximability Results

• It is NP-hard to approximate STAR COVER and STAR PARTITION within n1/2−ϵ for all
ϵ > 0 even when restricted to graphs of diameter two.

Triangle-free Graphs

• Both STAR COVER and STAR PARTITION are NP-hard for subcubic bipartite planar graphs.
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K1,r-free Graphs

• Both STAR COVER and STAR PARTITION are NP-hard for K1,r-free graphs for any fixed
r ≥ 3 (in particular, for line graphs)

• STAR PARTITION has an r
2
-approximation algorithm for K1,r-free graphs (which im-

plies a 3
2
-approximation algorithm for STAR PARTITION on line graphs and cobipartite

graphs).

• Both STAR COVER and STAR PARTITION are NP-hard even for co-tripartite graphs (a
subclass of K1,4-free graphs).

Hereditary Graphs STAR COVER:

• Has an O(n2t(n)) time O(log n)-approximation algorithm for any hereditary graph class
for which the maximum independent set can be computed in O(t(n)) time.

• Has a polynomial time O(log n)-approximation algorithm for perfect graphs and the
O(log n) approximation factor cannot be significantly improved assuming P ̸= NP.

Butterfly-free Graphs

• Both STAR COVER and STAR PARTITION have O(n14m) time O(log n)-approximation
algorithms for butterfly-free graphs.

• The O(log n) approximation factor cannot be significantly improved assuming P ̸= NP.

Cographs

• Both STAR COVER and STAR PARTITION have:

– O(n2) time exact algorithms for trivially perfect graphs ((C4, P4)-free graphs).

– O(n2) time exact algorithms for complements of trivially perfect graphs ((2K2, P4)-
free graphs).

– Linear time exact algorithms for threshold graphs ((C4, 2K2, P4)-free graphs).

• STAR COVER has linear time 2-approximation algorithms for cographs.

Split Graphs Both STAR COVER and STAR PARTITION:

• Are NP-hard even for K1,5-free split graphs.

• Have linear time 2-approximation algorithms for split graphs.

• Have linear time exact algorithms for claw-free (i.e., K1,3-free) split graphs.

• Have O(mn
3
2 ) time 3

2
-approximation algorithms for K1,4-free split graphs.
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Generalizations of Split Graphs

• STAR PARTITION has a linear time 2-approximation algorithm for split-like graphs.

• STAR COVER has an O(n2m) time O(log n)-approximation algorithm for split-like graphs.

• Unless P = NP, neither STAR COVER nor STAR PARTITION has a polynomial time c log n-
approximation algorithm for some c > 0, even on bipartite bisplit graphs.

• STAR COVER has an O(n2) time O(log n)-approximation algorithm for multisplit graphs.

• STAR PARTITION on an O(n2) time O(log n)-approximation algorithm for butterfly-free
multisplit graphs.

Double-Split Graphs

• Both STAR COVER and STAR PARTITION have O(n7) time exact algorithms for double-
split graphs.

• Proving that the analyses of our algorithms are tight requires the construction of an intri-
cate infinite family of double-split graphs with several properties.

• A simple linear time algorithm for recognizing double-split graphs.

• Introduction of a natural matrix representation for double-split graphs that leads to a
succinct matrix representation for any double-split graph.

5 Conclusion
In this thesis, we have investigated the STAR COVER and STAR PARTITION problems from
several perspectives. We identify interesting bounds on the star cover and star partition numbers
of graphs. We determine the complexity of deciding whether an input graph can be covered
by or partitioned into at most k stars, where k ≥ 1 is fixed. We obtain both approximation
algorithms and inapproximability results for both STAR COVER and STAR PARTITION. We
also discuss the exact exponential time and space complexities of both the problems. Finally,
we investigate the computational complexity of both STAR COVER and STAR PARTITION on
several natural graph classes.

While both STAR COVER and STAR PARTITION are NP-hard for P5-free graphs, their com-
putational complexity remains open for P4-free graphs, i.e., cographs. It appears likely that the
problems are polynomial time solvable for cographs.

We have obtained a 3
2
-approximation algorithm for K1,4-free split graphs. But the computa-

tional complexity of the problems on K1,4-free split graphs remains open. Improving the trivial
2-approximation algorithms for split graphs also remains an interesting algorithmic challenge.

Our approach to STAR COVER and STAR PARTITION on double-split graphs appears to
be fairly natural. Thus it would be interesting to see if the problems have other algorithmic
solutions, especially with better than O(n7) time complexity.

It would also be of interest to identify other natural graph classes for which the problems
are either NP-hard or have polynomial time exact or approximation algorithms. Indeed we have
the computational complexity status of these problems open even for cobipartite graphs.
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6 Organization of the Thesis
The proposed outline of the thesis is as follows:

Chapter 1: Introduction

Chapter 2: The Nature of Star Cover and Star Partition Problems

Chapter 3: Cographs and its Subclasses

Chapter 4: Split Graphs and its Generalizations

Chapter 5: Double-Split Graphs

Chapter 6: Conclusion

Appendix A: Double-Split Graphs
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