On Star Cover and Star Partition of Graphs

(Restricted Variants of the Dominating Set Problem)

Joyashree Mondal (MAT18D001)

Abstract

A graph that is isomorphic to $K_{1,r}$ for some $r \geq 0$ is called a star. Given a graph G = (V, E), a collection (V_1, \ldots, V_k) of subsets of V such that $V_1 \cup \ldots \cup V_k = V$ is called a star cover of G (of size k) if each set in the collection induces a star. A star cover (V_1, \ldots, V_k) of G is called a star partition (of size k) if (V_1, \ldots, V_k) is a partition of V. We study the associated optimization problems.

Given a graph G, the problem MIN STAR COVER asks for a star cover of minimum size. Given a graph G, the problem MIN STAR PARTITION asks for a star partition of minimum size. We also consider the corresponding decision versions of these problems: Given a graph G and a positive integer k, STAR COVER asks whether G has a star cover of size at most k and STAR PARTITION asks whether G has a star partition of size at most k.

These problems may be thought of as an amalgamation of the well-known coloring and dominating set problems. Indeed both these problems coincide with the dominating set problem when restricted to triangle-free graphs (and hence bipartite graphs).

In this seminar talk, I will present our work on STAR COVER and STAR PARTITION restricted to hereditary graph classes in general and butterfly-free graphs and split graphs in particular. Specifically, I will present an $O(\log)$ -approximation algorithm for STAR COVER on any hereditary graph class. I will show that the problems are polynomially equivalent, up to the optimum value, for butterfly-free graph and have (n^{14}) time $O(\log n)$ -approximatin algorithms. I will also present our improved NP-completeness results, approximation algorithms and special case polynomial time algorithms for the problems on split graphs.